fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.

نویسندگان

  • Michael J Frank
  • Chris Gagne
  • Erika Nyhus
  • Sean Masters
  • Thomas V Wiecki
  • James F Cavanagh
  • David Badre
چکیده

What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled, with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMA BOLD and mediofrontal theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose the statistically more rewarding option.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual differences and the neural representations of reward expectation and reward prediction error.

Reward expectation and reward prediction errors are thought to be critical for dynamic adjustments in decision-making and reward-seeking behavior, but little is known about their representation in the brain during uncertainty and risk-taking. Furthermore, little is known about what role individual differences might play in such reinforcement processes. In this study, it is shown behavioral and ...

متن کامل

Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package

Reinforcement learning and decision-making (RLDM) provide a quantitative framework and computational theories with which we can disentangle psychiatric conditions into the basic dimensions of neurocognitive functioning. RLDM offer a novel approach to assessing and potentially diagnosing psychiatric patients, and there is growing enthusiasm for both RLDM and computational psychiatry among clinic...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Dynamic flexibility in striatal-cortical circuits supports reinforcement learning.

Complex learned behaviors must involve the integrated action of distributed brain circuits. While the contributions of individual regions to learning have been extensively investigated, much less is known about how distributed brain networks orchestrate their activity over the course of learning. To address this gap, we used fMRI combined with tools from dynamic network neuroscience to obtain t...

متن کامل

Theta oscillations integrate functionally segregated sub-regions of the medial prefrontal cortex

Reinforcement learning requires the dynamic interplay of several specialized networks distributed across the brain. A potential mechanism to establish accurate temporal coordination among these paths is through the synchronization of neuronal activity to a common rhythm of neuronal firing. Previous EEG studies have suggested that theta oscillatory activity might be crucial in the integration of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2015